Search results for "Flat band"

showing 10 items of 14 documents

Flat-band superconductivity in periodically strained graphene : mean-field and Berezinskii–Kosterlitz–Thouless transition

2020

In the search of high-temperature superconductivity one option is to focus on increasing the density of electronic states. Here we study both the normal and s-wave superconducting state properties of periodically strained graphene, which exhibits approximate flat bands with a high density of states, with the flatness tunable by the strain profile. We generalize earlier results regarding a one-dimensional harmonic strain to arbitrary periodic strain fields, and further extend the results by calculating the superfluid weight and the Berezinskii–Kosterlitz–Thouless (BKT) transition temperature T BKT to determine the true transition point. By numerically solving the self-consistency equation, w…

Condensed Matter::Quantum Gasesflat bandssuprajohtavuusnanorakenteetBCS theoryCondensed Matter::Superconductivitysuperconductivitygraphenestrain engineeringgrafeeni
researchProduct

The influence of composition on band gap and dielectric constant of anodic Al-Ta mixed oxides

2015

Al-Ta mixed oxides were grown by anodizing sputter-deposited Al-Ta alloys of different composition. Photocurrent spectra revealed a band gap, Eg, slightly independent on Ta content and very close to that of anodic Ta2O5 (∼4.3 eV) with the exception of the anodic film on Al-10at% Ta, which resulted to be not photoactive under strong anodic polarization. The photoelectrochemical characterization allowed to estimate also the oxides flat band potential and to get the necessary information to sketch the energetic of the metal/oxide/electrolyte interfaces. Impedance measurements allowed to confirm the formation of insulating material and to estimate the dielectric constant of the oxides, which re…

Materials scienceAnodizingBand gapGeneral Chemical EngineeringOxideAnalytical chemistryDielectricElectrolyteAnodizingElectrochemistryMetalchemistry.chemical_compoundSettore ING-IND/23 - Chimica Fisica Applicatachemistryvisual_artBand gapvisual_art.visual_art_mediumAl-Ta mixed oxideElectrochemistryDielectric constantChemical Engineering (all)Polarization (electrochemistry)Flat band potential
researchProduct

Corrosion behaviour of a highly alloyed austenitic alloy UB6 in contaminated phosphoric acid

2013

The influence of temperature (20–80°C) on the electrochemical behaviour of passive films anodically formed on UB6 stainless steel in phosphoric acid solution (5.5 M H3PO4) has been examined by using potentiodynamic curves, electrochemical impedance spectroscopy, and Mott-Schottky analysis. UB6 stainless steel in contaminated phosphoric acid is characterised by high interfacial impedance, thereby, illustrating its high corrosion resistance. The obtained results show that the films behave as n-type and p-type semiconductors in the potential range above and below the flat band potential, respectively. This behaviour is assumed to be the consequence of the semiconducting properties of the iron …

Materials scienceArticle SubjectAlloyIron oxideengineering.materialElectrochemistryINGENIERIA QUIMICACorrosionchemistry.chemical_compoundlcsh:TA401-492General Materials ScienceCorrosion behaviourP type semiconductorPhosphoric acidInterfacial impedancePotentiodynamic curvesAustenitebusiness.industryProcess Chemistry and TechnologyMetallurgySemi-conducting propertyDielectric spectroscopyElectroquímicaElectrochemical behaviourSemiconductorSemiconductorschemistryengineeringMott-Schottky analysislcsh:Materials of engineering and construction. Mechanics of materialsbusinessFlat band potential
researchProduct

Photocurrent spectroscopy in passivity studies

2018

The aim of this article is to present photocurrent spectroscopy as useful in situ technique for the physicochemical characterization of passive films and corrosion layers. The response of (both amorphous and crystalline) semiconductor/electrolyte junction under irradiation is treated and discussed in order to get information about solid-state properties such as band gap and flat band potential. The possibility to use Photocurrent Spectroscopy (PCS), in a quantitative way, to get information on the composition of corrosion layers is discussed through a semiempirical correlation between the band gap of the oxides (or hydroxides) and the difference of electronegativity of their constituents. F…

Materials scienceBand gapPassive film/electrolyte energetics02 engineering and technologyElectrolyte01 natural sciencesCorrosionElectronegativityPhotoelectrochemistryOptical band gap0103 physical sciencesSpectroscopy010302 applied physicsPhotocurrentBilayer filmsbusiness.industryCorrosion layersOxide layersAmorphous semiconductors021001 nanoscience & nanotechnologyAmorphous solidSemiconductorHydroxide layersSettore ING-IND/23 - Chimica Fisica ApplicataOptoelectronicsPassive films0210 nano-technologybusinessFlat band potential
researchProduct

Influence of the electrodeposition conditions on the energetics of polypyrrole thin films

2008

The influence of the solvent used for the electrodeposition and that of the dopant anion on the energetics of electrochemically grown polypyrrole were studied by means of a non-destructive optical technique: Photocurrent Spectroscopy. Polypyrrole films doped with the same anion and grown in different solvents, both aqueous and non- aqueous, show the same HOMO-LUMO gap and the same Fermi level location in respect to HOMO. Polypyrrole films doped with different anions in aqueous solutions, present different values of indirect band gap and flat band potential, indicating that dopant anion influences both the defects band and the Fermi level locations.

Photocurrent Spectroscopy Band gap Flat Band Potential Fermi Level Polypyrrole.
researchProduct

Zero Temperature Magnetoresistance of the HF Metal: Enigma of $$\mathrm{Sr}_{3}\mathrm{Ru}_{2}\mathrm{O}_{7}$$

2014

To understand the nature of field-tuned metamagnetic quantum criticality in the ruthenate \(\mathrm{Sr}_{3}\mathrm{Ru}_{2}\mathrm{O}_{7}\) is one of the significant challenges in the condensed matter physics. It is established experimentally that the entropy has a peak in the ordered phase. It is unexpectedly higher than that outside latter phase, while the magnetoresistivity varies abruptly near the ordered phase boundary. We demonstrate unexpected similarity between \(\mathrm{Sr}_{3}\mathrm{Ru}_{2}\mathrm{O}_{7}\) and HF metals expressing universal physics that transcends microscopic details. Our \(T-B\) phase diagram of \(\mathrm{Sr}_{3}\mathrm{Ru}_{2}\mathrm{O}_{7}\) explains main featu…

PhysicsMetalResidual resistivityPhase boundaryCrystallographyMagnetoresistanceRestricted rangevisual_artvisual_art.visual_art_mediumFlat bandZero temperaturePhase diagram
researchProduct

Violation of the Wiedemann-Franz Law in HF Metals

2014

Experimental observations of the much-studied compounds CeCoIn\(_5\) and YbRh\(_2\)Si\(_2\) at vanishing temperatures carefully probe the nature of their magnetic-field-tuned QCPs. The violation of Wiedemann-Franz (WF) law, along with jumps revealed both in the residual resistivity \(\rho _0\) and the Hall resistivity \(R_H\), provide vital clues to the origin of their non-Fermi-liquid behavior. The empirical facts point unambiguously to association of the observed QCP with FC forming flat bands.

PhysicsResidual resistivityCondensed matter physicsElectrical resistivity and conductivitySeebeck coefficientLorenz numberFermi liquid theoryFlat bandWiedemann–Franz lawPhase diagram
researchProduct

Thermodynamic, dynamic and transport properties of quantum spin liquid in herbertsmithite from experimental and theoretical point of view

2019

In our review we focus on the quantum spin liquid, defining the thermodynamic, transport and relaxation properties of geometrically frustrated magnets (insulators) represented by herbertsmithite $\rm ZnCu_{3}(OH)_6Cl_2$.

Quantum phase transitionGeometrical frustrationFOS: Physical sciences02 engineering and technologyengineering.material01 natural sciencesCondensed Matter - Strongly Correlated ElectronsQuantum state0103 physical sciences010306 general physicsQuantum computerPhysicsQuantum PhysicsCondensed matter physicsStrongly Correlated Electrons (cond-mat.str-el)quantum spin liquidsherbertsmithitetopological quantum phase transitions021001 nanoscience & nanotechnologyCondensed Matter Physicslcsh:QC1-999Electronic Optical and Magnetic Materialsflat bandsengineeringQuasiparticleState of matterHerbertsmithiteCondensed Matter::Strongly Correlated ElectronsQuantum spin liquidfermion condensation0210 nano-technologyQuantum Physics (quant-ph)lcsh:Physics
researchProduct

New state of matter: heavy-fermion systems, quantum spin liquids, quasicrystals, cold gases, and high temperature superconductors

2018

We report on a new state of matter manifested by strongly correlated Fermi systems including various heavy-fermion (HF) metals, two-dimensional quantum liquids such as $\rm ^3He$ films, certain quasicrystals, and systems behaving as quantum spin liquids. Generically, these systems can be viewed as HF systems or HF compounds, in that they exhibit typical behavior of HF metals. At zero temperature, such systems can experience a so-called fermion-condensation quantum phase transition (FCQPT). Combining analytical considerations with arguments based entirely on experimental grounds we argue and demonstrate that the class of HF systems is characterized by universal scaling behavior of their ther…

Quantum phase transitionHigh-temperature superconductivityNon-Fermi liquid statesFOS: Physical sciencesQuantum phase transition01 natural sciencesNew state of matter010305 fluids & plasmaslaw.inventionQuantum spin liquidsSuperconductivity (cond-mat.supr-con)Condensed Matter - Strongly Correlated Electronslaw0103 physical sciencesGeneral Materials Science010306 general physicsQuantumSuperconductivityPhysicsFlat bandsCondensed matter physicsStrongly Correlated Electrons (cond-mat.str-el)Condensed Matter - SuperconductivityFermi surfaceStrongly correlated electron systemsFermionCondensed Matter PhysicsAtomic and Molecular Physics and OpticsHeavy fermionsHigh-Tc superconductivityCold gasesState of matterStrongly correlated materialQuasicrystals
researchProduct

Universal Behavior of Quantum Spin Liquid and Optical Conductivity in the Insulator Herbertsmithite

2018

We analyze optical conductivity with the goal to demonstrate experimental manifestation of a new state of matter, the so-called fermion condensate. Fermion condensates are realized in quantum spin liquids, exhibiting typical behavior of heavy fermion metals. Measurements of the low-frequency optical conductivity collected on the geometrically frustrated insulator herbertsmithite provide important experimental evidence of the nature of its quantum spin liquid composed of spinons. To analyze recent measurements of the herbertsmithite optical conductivity at different temperatures, we employ a model of strongly correlated quantum spin liquid located near the fermion condensation phase transiti…

Quantum phase transitionPhase transitionFOS: Physical sciencesOptical conductivityQuantum phase transitionengineering.material01 natural sciencesOptical conductivity010305 fluids & plasmasQuantum spin liquidsCondensed Matter - Strongly Correlated ElectronsNon-Fermi-liquid states0103 physical sciencesGeneral Materials ScienceStrongly correlated Fermi systems010306 general physicsPhysicsCondensed Matter::Quantum GasesFlat bandsStrongly Correlated Electrons (cond-mat.str-el)Condensed matter physicsFermionCondensed Matter PhysicsAtomic and Molecular Physics and OpticsSpinonengineeringState of matterHerbertsmithiteCondensed Matter::Strongly Correlated ElectronsQuantum spin liquidJournal of Low Temperature Physics
researchProduct